MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
1999 Moldova Team Selection Test
6
\frac{x_i}{\sqrt{1+x_0+x_1+\ldots+x_{i-1}}\cdot\sqrt{x_i+x_{i+1}+\ldots+x_n}}
\frac{x_i}{\sqrt{1+x_0+x_1+\ldots+x_{i-1}}\cdot\sqrt{x_i+x_{i+1}+\ldots+x_n}}
Source: Moldova TST 1999
August 7, 2023
inequalities
Problem Statement
Let
n
∈
N
,
x
0
=
0
n\in\mathbb{N}, x_0=0
n
∈
N
,
x
0
=
0
and
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\ldots,x_n
x
1
,
x
2
,
…
,
x
n
be postive real numbers such that
x
1
+
x
2
+
…
+
x
n
=
1
x_1+x_2+\ldots+x_n=1
x
1
+
x
2
+
…
+
x
n
=
1
. Show that
1
≤
∑
i
=
1
n
x
i
1
+
x
0
+
x
1
+
…
+
x
i
−
1
⋅
x
i
+
x
i
+
1
+
…
+
x
n
<
π
2
.
1\leq\sum_{i=1}^{n}\frac{x_i}{\sqrt{1+x_0+x_1+\ldots+x_{i-1}}\cdot\sqrt{x_i+x_{i+1}+\ldots+x_n}}<\frac{\pi}{2}.
1
≤
i
=
1
∑
n
1
+
x
0
+
x
1
+
…
+
x
i
−
1
⋅
x
i
+
x
i
+
1
+
…
+
x
n
x
i
<
2
π
.
Back to Problems
View on AoPS