Let n be a positive integer and let a1,a2,...,an,b1,b2,...,bn,c2,c3,...,c2n be 4n−1 positive real numbers such that ci+j2≥aibj, for all 1≤i,j≤n. Also let m=max2≤i≤2nci.
Prove that (2nm+c2+c3+...+c2n)2≥(na1+a2+...+an)(nb1+b2+...+bn)