MathDB
Triangle and BD

Source:

November 21, 2005
geometrysimilar triangles

Problem Statement

In ABC\triangle ABC, C=90,AC=6\angle C = 90^\circ, AC = 6 and BC=8BC = 8. Points DD and EE are on AB\overline{AB} and BC\overline{BC}, respectively, and BED=90\angle BED = 90^\circ. If DE=4DE = 4, then BD=BD =
[asy] size(100); pathpen = linewidth(0.7); pointpen = black+linewidth(3); pair A = (0,0), C = (6,0), B = (6,8), D = (2*A+B)/3, E = (2*C+B)/3; D(D("A",A,SW)--D("B",B,NW)--D("C",C,SE)--cycle); D(D("D",D,NW)--D("E",E,plain.E)); D(rightanglemark(D,E,B,16)); D(rightanglemark(A,C,B,16));[/asy]
(A)  5(B)  163(C)  203(D)  152(E)  8\mathbf{(A)}\;5\qquad \mathbf{(B)}\;\frac{16}{3}\qquad \mathbf{(C)}\; \frac{20}{3}\qquad \mathbf{(D)}\; \frac{15}{2}\qquad \mathbf{(E)}\; 8