MathDB
sum a /\sqrt{(a + 2b)^3 \ge 1 /\sqrt{a + b + c}

Source: 2018 Romania JBMO TST 5.2

June 19, 2020
inequalitiesalgebra

Problem Statement

If a,b,ca, b, c are positive real numbers, prove that a(a+2b)3+b(b+2c)3+c(c+2a)31a+b+c\frac{a}{\sqrt{(a + 2b)^3}}+\frac{b}{\sqrt{(b + 2c)^3}} +\frac{c} {\sqrt{(c + 2a)^3}} \ge \frac{1}{\sqrt{a + b + c}} Alexandru Mihalcu