MathDB
prove integer

Source: 2016 KJMO #1

November 13, 2016
number theoryalgebra

Problem Statement

positive reals a1,a2,...a_1, a_2, . . . satisfying (i) an+1=a12a22...an23a_{n+1}=a_1^2\cdot a_2^2 \cdot . . . \cdot a_n^2-3(all positive integers nn) (ii) 12(a1+a21)\frac{1}{2}(a_1+\sqrt{a_2-1}) is positive integer. prove that 12(a1a2...an+an+11)\frac{1}{2}(a_1 \cdot a_2 \cdot . . . \cdot a_n + \sqrt{a_{n+1}-1}) is positive integer