MathDB
limit of binomial sequence

Source: Moldova 2000 Grade 12 P2

April 27, 2021
limitreal analysis

Problem Statement

For nNn\in\mathbb N, define an=1(n1)+1(n2)++1(nn).a_n=\frac1{\binom n1}+\frac1{\binom n2}+\ldots+\frac1{\binom nn}. (a) Prove that the sequence bn=annb_n=a_n^n is convergent and determine the limit. (b) Show that limnbn>(32)3+2\lim_{n\to\infty}b_n>\left(\frac32\right)^{\sqrt3+\sqrt2}.