MathDB
f^(n) (n) = p(n)

Source: KoMaL A. 835

November 11, 2022
algebrafunctional equationpolynomial

Problem Statement

Let f(n)(x)f^{(n)}(x) denote the nthn^{\text{th}} iterate of function ff, i.e f(1)(x)=f(x)f^{(1)}(x)=f(x), f(n+1)(x)=f(f(n)(x))f^{(n+1)}(x)=f(f^{(n)}(x)). Let p(n)p(n) be a given polynomial with integer coefficients, which maps the positive integers into the positive integers. Is it possible that the functional equation f(n)(n)=p(n)f^{(n)}(n)=p(n) has exactly one solution ff that maps the positive integers into the positive integers?
Submitted by Dávid Matolcsi and Kristóf Szabó, Budapest