MathDB
\frac{a^4+3ab^3}{a^3+2b^3}+\frac{b^4+3bc^3}{b^3+2c^3}+\frac{c^4+3ca^3}{c^3+2a^3}

Source: Moldova JTST 2023

May 5, 2023
inequalities

Problem Statement

Let a,b,ca,b,c be positive real numbers such that a2+b2+c2=3.a^2+b^2+c^2=3. Prove that a4+3ab3a3+2b3+b4+3bc3b3+2c3+c4+3ca3c3+2a34.\frac{a^4+3ab^3}{a^3+2b^3}+\frac{b^4+3bc^3}{b^3+2c^3}+\frac{c^4+3ca^3}{c^3+2a^3}\leq4.