Let K be the point of intersection of AB and the line touching the circumcircle of △ABC at C where m(A)>m(B). Let L be a point on [BC] such that m(ALB)=m(CAK), 5∣LC∣=4∣BL∣, and ∣KC∣=12. What is ∣AK∣?<spanclass=′latex−bold′>(A)</span>42<spanclass=′latex−bold′>(B)</span>6<spanclass=′latex−bold′>(C)</span>8<spanclass=′latex−bold′>(D)</span>9<spanclass=′latex−bold′>(E)</span>None of the above