MathDB
Choosing sides

Source: Problem #17 2016 AMC 10A and #13 2016 AMC 12A

February 3, 2016
probabilityAMCAMC 10AMC 10 A2016 AMC 10A

Problem Statement

Let NN be a positive multiple of 55. One red ball and NN green balls are arranged in a line in random order. Let P(N)P(N) be the probability that at least 35\tfrac{3}{5} of the green balls are on the same side of the red ball. Observe that P(5)=1P(5)=1 and that P(N)P(N) approaches 45\tfrac{4}{5} as NN grows large. What is the sum of the digits of the least value of NN such that P(N)<321400P(N) < \tfrac{321}{400}?
<spanclass=latexbold>(A)</span>12<spanclass=latexbold>(B)</span>14<spanclass=latexbold>(C)</span>16<spanclass=latexbold>(D)</span>18<spanclass=latexbold>(E)</span>20<span class='latex-bold'>(A) </span> 12 \qquad <span class='latex-bold'>(B) </span> 14 \qquad <span class='latex-bold'>(C) </span>16 \qquad <span class='latex-bold'>(D) </span> 18 \qquad <span class='latex-bold'>(E) </span> 20