MathDB
2004 Calculus #9

Source:

November 29, 2011
calculuslimitratioalgebrapolynomiallogarithmsabsolute value

Problem Statement

Find the positive constant c0c_0 such that the series n=0n!(cn)n \displaystyle\sum_{n = 0}^{\infty} \dfrac {n!}{(cn)^n} converges for c>c0c>c_0 and diverges for 0<c<c00<c<c_0.