MathDB
Colored Octohedra

Source:

March 23, 2008
countingdistinguishabilitygeometry3D geometryoctahedronrotationgeometric transformation

Problem Statement

Eight congruent equilateral triangles, each of a different color, are used to construct a regular octahedron. How many distinguishable ways are there to construct the octahedron? (Two colored octahedrons are distinguishable if neither can be rotated to look just like the other.) [asy]import three; import math; size(180); defaultpen(linewidth(.8pt)); currentprojection=orthographic(2,0.2,1);
triple A=(0,0,1); triple B=(sqrt(2)/2,sqrt(2)/2,0); triple C=(sqrt(2)/2,-sqrt(2)/2,0); triple D=(-sqrt(2)/2,-sqrt(2)/2,0); triple E=(-sqrt(2)/2,sqrt(2)/2,0); triple F=(0,0,-1); draw(A--B--E--cycle); draw(A--C--D--cycle); draw(F--C--B--cycle); draw(F--D--E--cycle,dotted+linewidth(0.7));[/asy]<spanclass=latexbold>(A)</span> 210<spanclass=latexbold>(B)</span> 560<spanclass=latexbold>(C)</span> 840<spanclass=latexbold>(D)</span> 1260<spanclass=latexbold>(E)</span> 1680 <span class='latex-bold'>(A)</span>\ 210 \qquad <span class='latex-bold'>(B)</span>\ 560 \qquad <span class='latex-bold'>(C)</span>\ 840 \qquad <span class='latex-bold'>(D)</span>\ 1260 \qquad <span class='latex-bold'>(E)</span>\ 1680