MathDB
Problems
Contests
National and Regional Contests
Serbia Contests
Serbia Team Selection Test
1982 Yugoslav Team Selection Test
Problem 1
remainder upon division, prove equation
remainder upon division, prove equation
Source: Yugoslav TST 1982 P1
May 29, 2021
number theory
Problem Statement
Let
p
>
2
p>2
p
>
2
be a prime number. For
k
=
1
,
2
,
…
,
p
−
1
k=1,2,\ldots,p-1
k
=
1
,
2
,
…
,
p
−
1
we denote by
a
k
a_k
a
k
the remainder when
k
p
k^p
k
p
is divided by
p
2
p^2
p
2
. Prove that
a
1
+
a
2
+
…
+
a
p
−
1
=
p
3
−
p
2
2
.
a_1+a_2+\ldots+a_{p-1}=\frac{p^3-p^2}2.
a
1
+
a
2
+
…
+
a
p
−
1
=
2
p
3
−
p
2
.
Back to Problems
View on AoPS