MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN B Problems
5
B 5
B 5
Source:
May 25, 2007
modular arithmetic
algebra
polynomial
Vieta
symmetry
search
induction
Problem Statement
Let
p
p
p
be an odd prime. If
g
1
,
⋯
,
g
ϕ
(
p
−
1
)
g_{1}, \cdots, g_{\phi(p-1)}
g
1
,
⋯
,
g
ϕ
(
p
−
1
)
are the primitive roots
(
m
o
d
p
)
\pmod{p}
(
mod
p
)
in the range
1
<
g
≤
p
−
1
1<g \le p-1
1
<
g
≤
p
−
1
, prove that
∑
i
=
1
ϕ
(
p
−
1
)
g
i
≡
μ
(
p
−
1
)
(
m
o
d
p
)
.
\sum_{i=1}^{\phi(p-1)}g_{i}\equiv \mu(p-1) \pmod{p}.
i
=
1
∑
ϕ
(
p
−
1
)
g
i
≡
μ
(
p
−
1
)
(
mod
p
)
.
Back to Problems
View on AoPS