MathDB
B 5

Source:

May 25, 2007
modular arithmeticalgebrapolynomialVietasymmetrysearchinduction

Problem Statement

Let pp be an odd prime. If g1,,gϕ(p1)g_{1}, \cdots, g_{\phi(p-1)} are the primitive roots (modp)\pmod{p} in the range 1<gp11<g \le p-1, prove that i=1ϕ(p1)giμ(p1)(modp).\sum_{i=1}^{\phi(p-1)}g_{i}\equiv \mu(p-1) \pmod{p}.