MathDB
Fourier coefficients inequality

Source: RMO TST 2007, day 6

June 8, 2007
inequalitiestrigonometrythree variable inequalityFourier

Problem Statement

For nNn\in\mathbb{N}, n2n\geq 2, ai,biRa_{i}, b_{i}\in\mathbb{R}, 1in1\leq i\leq n, such that i=1nai2=i=1nbi2=1,i=1naibi=0.\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1, \sum_{i=1}^{n}a_{i}b_{i}=0. Prove that (i=1nai)2+(i=1nbi)2n.\left(\sum_{i=1}^{n}a_{i}\right)^{2}+\left(\sum_{i=1}^{n}b_{i}\right)^{2}\leq n. Cezar Lupu & Tudorel Lupu