MathDB
JBMO Shortlist 2022 A2

Source: JBMO Shortlist 2022

June 26, 2023
InequalityJuniorBalkanshortlistalgebra

Problem Statement

Let x,y,x, y, and zz be positive real numbers such that xy+yz+zx=3xy + yz + zx = 3. Prove that x+3y+z+y+3z+x+z+3x+y+327(x+y+z)2(x+y+z)3.\frac{x + 3}{y + z} + \frac{y + 3}{z + x} + \frac{z + 3}{x + y} + 3 \ge 27 \cdot \frac{(\sqrt{x} + \sqrt{y} + \sqrt{z})^2}{(x + y + z)^3}.
Proposed by Petar Filipovski, Macedonia