MathDB
Ratio of area of EFGH to area of ABCD

Source: 2011 AMC 10 A Problem 11

June 25, 2011
ratiogeometryAMC

Problem Statement

Square EFGHEFGH has one vertex on each side of square ABCDABCD. Point EE is on AB\overline{AB} with AE=7EBAE=7\cdot EB. What is the ratio of the area of EFGHEFGH to the area of ABCDABCD?
<spanclass=latexbold>(A)</span>4964<spanclass=latexbold>(B)</span>2532<spanclass=latexbold>(C)</span>78<spanclass=latexbold>(D)</span>528<spanclass=latexbold>(E)</span>144<span class='latex-bold'>(A)</span>\,\frac{49}{64} \qquad<span class='latex-bold'>(B)</span>\,\frac{25}{32} \qquad<span class='latex-bold'>(C)</span>\,\frac78 \qquad<span class='latex-bold'>(D)</span>\,\frac{5\sqrt{2}}{8} \qquad<span class='latex-bold'>(E)</span>\,\frac{\sqrt{14}}{4}