MathDB
Problems
Contests
Undergraduate contests
Putnam
1942 Putnam
B5
Putnam 1942 B5
Putnam 1942 B5
Source: Putnam 1942
March 1, 2022
Putnam
trigonometry
integration
Problem Statement
Sketch the curve
y
=
x
1
+
x
6
(
sin
x
)
2
,
y= \frac{x}{1+x^6 (\sin x)^{2}},
y
=
1
+
x
6
(
sin
x
)
2
x
,
and show that
∫
0
∞
x
1
+
x
6
(
sin
x
)
2
d
x
\int_{0}^{\infty} \frac{x}{1+x^6 (\sin x)^{2}}\; dx
∫
0
∞
1
+
x
6
(
sin
x
)
2
x
d
x
exists.
Back to Problems
View on AoPS