MathDB
Problems
Contests
National and Regional Contests
Croatia Contests
Croatia National Olympiad
2004 Croatia National Olympiad
Problem 1
complex inequality
complex inequality
Source: Croatian MO 2004 4th Grade P1
April 9, 2021
Inequality
Complex number
complex inequality
inequalities
Problem Statement
Let
z
1
,
…
,
z
n
z_1,\ldots,z_n
z
1
,
…
,
z
n
and
w
1
,
…
,
w
n
w_1,\ldots,w_n
w
1
,
…
,
w
n
(
n
∈
N
)
(n\in\mathbb N)
(
n
∈
N
)
be complex numbers such that
∣
ϵ
1
z
1
+
…
+
ϵ
n
z
n
∣
≤
∣
ϵ
1
w
1
+
…
+
ϵ
n
w
n
∣
|\epsilon_1z_1+\ldots+\epsilon_nz_n|\le|\epsilon_1w_1+\ldots+\epsilon_nw_n|
∣
ϵ
1
z
1
+
…
+
ϵ
n
z
n
∣
≤
∣
ϵ
1
w
1
+
…
+
ϵ
n
w
n
∣
holds for every choice of
ϵ
1
,
…
,
ϵ
n
∈
{
−
1
,
1
}
\epsilon_1,\ldots,\epsilon_n\in\{-1,1\}
ϵ
1
,
…
,
ϵ
n
∈
{
−
1
,
1
}
. Prove that
∣
z
1
∣
2
+
…
+
∣
z
n
∣
2
≤
∣
w
1
∣
2
+
…
+
∣
w
n
∣
2
.
|z_1|^2+\ldots+|z_n|^2\le|w_1|^2+\ldots+|w_n|^2.
∣
z
1
∣
2
+
…
+
∣
z
n
∣
2
≤
∣
w
1
∣
2
+
…
+
∣
w
n
∣
2
.
Back to Problems
View on AoPS