MathDB
complex inequality

Source: Croatian MO 2004 4th Grade P1

April 9, 2021
InequalityComplex numbercomplex inequalityinequalities

Problem Statement

Let z1,,znz_1,\ldots,z_n and w1,,wnw_1,\ldots,w_n (nN)(n\in\mathbb N) be complex numbers such that ϵ1z1++ϵnznϵ1w1++ϵnwn|\epsilon_1z_1+\ldots+\epsilon_nz_n|\le|\epsilon_1w_1+\ldots+\epsilon_nw_n|holds for every choice of ϵ1,,ϵn{1,1}\epsilon_1,\ldots,\epsilon_n\in\{-1,1\}. Prove that z12++zn2w12++wn2.|z_1|^2+\ldots+|z_n|^2\le|w_1|^2+\ldots+|w_n|^2.