MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2018 District Olympiad
1
Logarithmic Equation
Logarithmic Equation
Source: Romanian District Olympiad 2018 - Grade X - Problem 1
March 10, 2018
logarithms
Problem Statement
Find
x
∈
R
x\in\mathbb{R}
x
∈
R
for which
log
2
(
x
2
+
4
)
−
log
2
x
+
x
2
−
4
x
+
2
=
0.
\log_2(x^2 + 4) - \log_2x + x^2 - 4x + 2 = 0.
lo
g
2
(
x
2
+
4
)
−
lo
g
2
x
+
x
2
−
4
x
+
2
=
0.
Back to Problems
View on AoPS