MathDB
Sequence congruence !!!

Source: Romania TST 2015 Day 5 Problem 3

June 4, 2015
Sequencebinomial coefficientscongruencenumber theoryRomanian TST

Problem Statement

Define a sequence of integers by a0=1a_0=1 , and an=k=0n1(nk)aka_n=\sum_{k=0}^{n-1} \binom{n}{k}a_k , n1n \geq 1 . Let mm be a positive integer , let pp be a prime , and let qq and rr be non-negative integers . Prove that : apmq+rapm1q+r(modpm)a_{p^mq+r} \equiv a_{p^{m-1}q+r} \pmod{p^m}