MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2017 Harvard-MIT Mathematics Tournament
28
2017 Guts #28: Weird sequence and sum
2017 Guts #28: Weird sequence and sum
Source:
February 21, 2017
algebra
Problem Statement
Let
…
,
a
−
1
,
a
0
,
a
1
,
a
2
,
…
\dots, a_{-1}, a_0, a_1, a_2, \dots
…
,
a
−
1
,
a
0
,
a
1
,
a
2
,
…
be a sequence of positive integers satisfying the folloring relations:
a
n
=
0
a_n = 0
a
n
=
0
for
n
<
0
n < 0
n
<
0
,
a
0
=
1
a_0 = 1
a
0
=
1
, and for
n
≥
1
n \ge 1
n
≥
1
,
a
n
=
a
n
−
1
+
2
(
n
−
1
)
a
n
−
2
+
9
(
n
−
1
)
(
n
−
2
)
a
n
−
3
+
8
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
a
n
−
4
.
a_n = a_{n - 1} + 2(n - 1)a_{n - 2} + 9(n - 1)(n - 2)a_{n - 3} + 8(n - 1)(n - 2)(n - 3)a_{n - 4}.
a
n
=
a
n
−
1
+
2
(
n
−
1
)
a
n
−
2
+
9
(
n
−
1
)
(
n
−
2
)
a
n
−
3
+
8
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
a
n
−
4
.
Compute
∑
n
≥
0
1
0
n
a
n
n
!
.
\sum_{n \ge 0} \frac{10^n a_n}{n!}.
n
≥
0
∑
n
!
1
0
n
a
n
.
Back to Problems
View on AoPS