MathDB
Romania District Olympiad 2005 - Grade XI

Source:

April 10, 2011
algebrapolynomiallinear algebralinear algebra unsolved

Problem Statement

a)Let A,BM3(R)A,B\in \mathcal{M}_3(\mathbb{R}) such that rank A>rank B\text{rank}\ A>\text{rank}\ B. Prove that rank A2rank B2\text{rank}\ A^2\ge \text{rank}\ B^2.
b)Find the non-constant polynomials fR[X]f\in \mathbb{R}[X] such that ()A,BM4(R)(\forall)A,B\in \mathcal{M}_4(\mathbb{R}) with rank A>rank B\text{rank}\ A>\text{rank}\ B, we have rank f(A)>rank f(B)\text{rank}\ f(A)>\text{rank}\ f(B).