MathDB
19th kmo #6

Source: KMO round 2, problem 6

February 3, 2006
inequalities unsolvedinequalities

Problem Statement

Real numbers x1,x2,x3,,xnx_1, x_2, x_3, \cdots , x_n satisfy x12+x22+x32++xn2=1x_1^2 + x_2^2 + x_3^2 + \cdots + x_n^2 = 1. Show that x11+x12+x21+x12+x22++xn1+x12+x22+x32++xn2<n2. \frac{x_1}{1+x_1^2}+\frac{x_2}{1+x_1^2+x_2^2}+\cdots+\frac{x_n}{1+ x_1^2 + x_2^2 + x_3^2 + \cdots + x_n^2} < \sqrt{\frac n2} .