MathDB
|a_k| \leq \frac{k(n+1-k)}{2} when |a_{k-1} - 2a_{k} + a_{k+1}| \leq 1

Source: Singapore Senior Math Olympiad 2012 2nd Round p4 SMO

March 25, 2020
recurrence relationinequalitiesSequencealgebra

Problem Statement

Let a1,a2,...,an,an+1a_1, a_2, ..., a_n, a_{n+1} be a finite sequence of real numbers satisfying a0=an+1=0a_0 = a_{n+1} = 0 and ak12ak+ak+11|a_{k-1} - 2a_{k} + a_{k+1}| \leq 1 for k=1,2,...,nk = 1, 2, ..., n Prove that for k=0,1,...,n+1,k=0, 1, ..., n+1, akk(n+1k)2|a_k| \leq \frac{k(n+1-k)}{2}