MathDB
Quotient of partial sums in geometric series is an integer

Source: Macedonian TST for IMO 2013 - P3 day 2

March 28, 2021
geometric seriesnumber theory

Problem Statement

Let aa and n>0n>0 be integers. Define an=1+a+a2...+an1a_{n} = 1+a+a^2...+a^{n-1}. Show that if pap1p|a^p-1 for all prime divisors of n2n1n_{2}-n_{1}, then the number an2an1n2n1\frac{a_{n_{2}}-a_{n_{1}}}{n_{2}-n_{1}} is an integer.