MathDB
Bounded integer function with prime quasiperiodicity

Source: 5th Memorial Mathematical Competition "Aleksandar Blazhevski - Cane" - Senior - Problem 3

January 29, 2024
functionnumber theory

Problem Statement

Find all functions f:NZf: \mathbb{N} \rightarrow \mathbb{Z} such that f(k)k|f(k)| \leq k for all positive integers kk and there is a prime number p>2024p>2024 which satisfies both of the following conditions:
1)1) For all aNa \in \mathbb{N} we have af(a+p)=af(a)+pf(a),af(a+p) = af(a)+pf(a), 2)2) For all aNa \in \mathbb{N} we have pap+12f(a).p|a^{\frac{p+1}{2}}-f(a).
Proposed by Nikola Velov