MathDB
2022 PUMaC Individual Finals B1

Source:

September 9, 2023
algebrainequalities

Problem Statement

Let a,b,c,da, b, c, d be real numbers for which a2+b2+c2+d2=1a^2 + b^2 + c^2 + d^2 = 1. Show the following inequality: a2+b2c2d22+4(ac+bd).a^2 + b^2 - c^2 - d^2 \le \sqrt{2 + 4(ac + bd)}.