MathDB
Prove this inequality as the bound of the integration

Source: 2019 Jozsef Wildt International Math Competition

May 20, 2020
integrationinequalitiestrigonometryinverse trigonometric functioncalculus

Problem Statement

If 0<ab0 < a \leq b then23tan1(2(b2a2)(a2+2)(b2+2))ab(x2+1)(x2+x+1)(x3+x2+1)(x3+x+1)dx43tan1((ba)3a+b+2(1+ab))\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{2(b^2 - a^2)}{(a^2+2)(b^2+2)}\right)\leq \int \limits_a^b \frac{(x^2+1)(x^2+x+1)}{(x^3 + x^2 + 1) (x^3 + x + 1)}dx\leq \frac{4}{\sqrt{3}}\tan^{-1}\left(\frac{(b-a)\sqrt{3}}{a+b+2(1+ab)}\right)