MathDB
perpendicular wanted, tangent and secant to a circle related

Source: Champions Tournament (Ukraine) - Турнір чемпіонів - 2002 Seniors p2

September 6, 2020
geometryperpendiculartangentsecantChampions Tournament

Problem Statement

The point PP is outside the circle ω\omega with center OO. Lines 1\ell_1 and 2\ell_2 pass through a point PP, 1\ell_1 touches the circle ω\omega at the point AA and 2\ell_2 intersects ω\omega at the points BB and CC. Tangent to the circle ω\omega at points BB and CC intersect at point QQ. Let KK be the point of intersection of the lines BCBC and AQAQ. Prove that (OK)(PQ)(OK) \perp (PQ).