MathDB
Imo shortlist 2003, algebra problem 1

Source: German TST 2004, exam I, problem 1

May 18, 2004
geometry3D geometrytetrahedronlinear algebraalgebraIMO ShortlistVectors

Problem Statement

Let aija_{ij} i=1,2,3i=1,2,3; j=1,2,3j=1,2,3 be real numbers such that aija_{ij} is positive for i=ji=j and negative for iji\neq j.
Prove the existence of positive real numbers c1c_{1}, c2c_{2}, c3c_{3} such that the numbers a11c1+a12c2+a13c3,a21c1+a22c2+a23c3,a31c1+a32c2+a33c3a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},\qquad a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},\qquad a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3} are either all negative, all positive, or all zero.
Proposed by Kiran Kedlaya, USA