Let x1,x2,⋯,xn be iid rv. Sn=∑xk
(a) let P(∣x1∣≤1)=1 , E[x1]=0 , E[x12]=σ2>0
Prove that ∃C>0 , ∀u≥2nσ2P(Sn≥u)≤e−Culog(u/nσ2)(b) let P(x1=1)=P(x1=−1)=σ2/2 , P(x1=0)=1−σ2
Prove that ∃B1<1,B2>1,B3>0 , ∀u≥1,B1n≥u≥B2nσ2P(Sn≥u)>e−B3ulog(u/nσ2)