MathDB
log inequality

Source: Moldova 2000 Grade 10 P2

April 26, 2021
Inequalityinequalities

Problem Statement

Show that if real numbers x<1<yx<1<y satisfy the inequality 2logx+log(1x)3logy+log(y1),2\log x+\log(1-x)\ge3\log y+\log(y-1),then x3+y3<2x^3+y^3<2.