MathDB
Combinatorial Inequality

Source: Finland 2012, Problem 4

May 5, 2013
inequalitiesinductioncombinatorics unsolvedcombinatorics

Problem Statement

Let k,nN,0<k<n.k,n\in\mathbb{N},0<k<n. Prove that j=1k(nj)=(n1)+(n2)++(nk)nk.\sum_{j=1}^k\binom{n}{j}=\binom{n}{1}+ \binom{n}{2}+\ldots + \binom{n}{k}\leq n^k.