MathDB
IMC 2017 Problem 6

Source:

August 3, 2017
college contestsIMCimc 2017

Problem Statement

Let f:[0;+)Rf:[0;+\infty)\to \mathbb R be a continuous function such that limx+f(x)=L\lim\limits_{x\to +\infty} f(x)=L exists (it may be finite or infinite). Prove that limn01f(nx)dx=L. \lim\limits_{n\to\infty}\int\limits_0^{1}f(nx)\,\mathrm{d}x=L.