MathDB
Miklós Schweitzer 2022 P3

Source: http://www.math.u-szeged.hu/~mmaroti/schweitzer/schweitzer-2022.pdf

November 22, 2022
college contestsreal analysislimits

Problem Statement

Original in Hungarian; translated with Google translate; polished by myself.
Let f:[0,)[0,)f: [0, \infty) \to [0, \infty) be a function that is linear between adjacent integers, and for n=0,1,n = 0, 1, \dots satisfies f(n)={0,if 2n,4l+1,if 2n,4l1n<4l(l=1,2,).f(n) = \begin{cases} 0, & \textrm{if }2\mid n,\\4^l + 1, & \textrm{if }2 \nmid n, 4^{l - 1} \leq n < 4^l(l = 1, 2, \dots).\end{cases} Let f1(x)=f(x)f^1(x) = f(x), and fk(x)=f(fk1(x))f^k(x) = f(f^{k - 1}(x)) for all integers k2k \geq 2. Determine the values of lim infkfk(x)\liminf\nolimits_{k\to\infty}f^k(x) and lim supkfk(x)\limsup\nolimits_{k\to\infty}f^k(x) for almost all x[0,)x \in [0, \infty) under Lebesgue measure.
(Not sure whether the last sentence translates correctly; the original: Határozzuk meg Lebesgue majdnem minden x[0,)x\in [0, \infty)-re a lim infkfk(x)\liminf\nolimits_{k\to\infty}f^k(x) és lim supkfk(x)\limsup\nolimits_{k\to\infty}f^k(x) értékét.)