MathDB
Problems
Contests
Undergraduate contests
CIIM
2019 CIIM
Problem 3
CIIM 2019 Problem 3
CIIM 2019 Problem 3
Source:
August 30, 2021
CIIM
Problem Statement
Let
{
a
n
}
n
∈
N
\{a_n\}_{n\in \mathbb{N}}
{
a
n
}
n
∈
N
a sequence of non zero real numbers. For
m
≥
1
m \geq 1
m
≥
1
, we define:
X
m
=
{
X
⊆
{
0
,
1
,
…
,
m
−
1
}
:
∣
∑
x
∈
X
a
x
∣
>
1
m
}
.
X_m = \left\{X \subseteq \{0, 1,\dots, m - 1\}: \left|\sum_{x\in X} a_x \right| > \dfrac{1}{m}\right\}.
X
m
=
{
X
⊆
{
0
,
1
,
…
,
m
−
1
}
:
x
∈
X
∑
a
x
>
m
1
}
.
Show that
lim
n
→
∞
∣
X
n
∣
2
n
=
1.
\lim_{n\to\infty}\frac{|X_n|}{2^n} = 1.
n
→
∞
lim
2
n
∣
X
n
∣
=
1.
Back to Problems
View on AoPS