MathDB
14 specific points on a ’chocolate’ tablet

Source: Romanian District Olympiad, Grade IX, Problem 4

October 7, 2018
geometryrectanglevectorial geometryanalytic geometry

Problem Statement

Divide a 2×4 2\times 4 rectangle into 8 8 unit squares to obtain a set of 15 15 vertices denoted by M. \mathcal{M} . Find the points AM A\in\mathcal{M} that have the property that the set M{A} \mathcal{M}\setminus \{ A\} can form 7 7 pairs (A1,B1),(A2,B2),,(A7,B7)M×M \left( A_1,B_1\right) ,\left( A_2,B_2\right) ,\ldots ,\left( A_7,B_7\right)\in\mathcal{M}\times\mathcal{M} such that A1B1+A2B2++A7B7=O. \overrightarrow{A_1B_1} +\overrightarrow{A_2B_2} +\cdots +\overrightarrow{A_7B_7} =\overrightarrow{O} .