MathDB
2004 Republic of Moldova , Problem 9

Source: Crux 2007

February 2, 2015
inequalitiesinequalities proposed

Problem Statement

Let a,ba,b and cc be positive real numbers . Prove that4(b3c3)b+c+4(c3a3)c+a+4(a3b3)a+b(bc)2+(ca)2+(ab)2.\left | \frac{4(b^3-c^3)}{b+c}+ \frac{4(c^3-a^3)}{c+a}+ \frac{4(a^3-b^3)}{a+b} \right |\leq (b-c)^2+(c-a)^2+(a-b)^2.