MathDB
Romania NMO 2023 Grade 11 P4

Source: Romania National Olympiad 2023

April 14, 2023
real analysisdifferentiable functionContinous function

Problem Statement

We consider a function f:RRf:\mathbb{R} \rightarrow \mathbb{R} for which there exist a differentiable function g:RRg : \mathbb{R} \rightarrow \mathbb{R} and exist a sequence (an)n1(a_n)_{n \geq 1} of real positive numbers, convergent to 0,0, such that
g(x)=limnf(x+an)f(x)an,xR. g'(x) = \lim_{n \to \infty} \frac{f(x + a_n) - f(x)}{a_n}, \forall x \in \mathbb{R}.
a) Give an example of such a function f that is not differentiable at any point xR.x \in \mathbb{R}.
b) Show that if ff is continuous on R\mathbb{R}, then ff is differentiable on R.\mathbb{R}.