MathDB
inequality

Source:

November 24, 2010
inequalities

Problem Statement

If x1+x2++xn=i=1nxi=12x_1 + x_2 + \cdots + x_n = \sum_{i=1}^{n} x_i = \frac{1}{2} and xi>0x_i > 0 ; then prove that:
1x11+x11x21+x21xn1+xn=i=1n1xi1+xi13 \frac{1-x_1}{1+x_1} \cdot \frac{1-x_2}{1+x_2} \cdots \frac{1-x_n}{1+x_n} = \prod_{i=1}^{n} \frac{1-x_i}{1+x_i} \geq \frac{1}{3}