MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova Team Selection Test
1993 Moldova Team Selection Test
7
inequality
inequality
Source:
November 24, 2010
inequalities
Problem Statement
If
x
1
+
x
2
+
⋯
+
x
n
=
∑
i
=
1
n
x
i
=
1
2
x_1 + x_2 + \cdots + x_n = \sum_{i=1}^{n} x_i = \frac{1}{2}
x
1
+
x
2
+
⋯
+
x
n
=
∑
i
=
1
n
x
i
=
2
1
and
x
i
>
0
x_i > 0
x
i
>
0
; then prove that:
1
−
x
1
1
+
x
1
⋅
1
−
x
2
1
+
x
2
⋯
1
−
x
n
1
+
x
n
=
∏
i
=
1
n
1
−
x
i
1
+
x
i
≥
1
3
\frac{1-x_1}{1+x_1} \cdot \frac{1-x_2}{1+x_2} \cdots \frac{1-x_n}{1+x_n} = \prod_{i=1}^{n} \frac{1-x_i}{1+x_i} \geq \frac{1}{3}
1
+
x
1
1
−
x
1
⋅
1
+
x
2
1
−
x
2
⋯
1
+
x
n
1
−
x
n
=
∏
i
=
1
n
1
+
x
i
1
−
x
i
≥
3
1
Back to Problems
View on AoPS