MathDB
Function g for triples of real numbers

Source: Canadian Repêchage 2010: Problem 7

May 6, 2014
functionalgebra solvedalgebra

Problem Statement

If (a, b, c)(a,~b,~c) is a triple of real numbers, de fine
[*] g(a, b, c)=(a+b, b+c, a+c)g(a,~b,~c)=(a+b,~b+c,~a+c), and [*] gn(a, b, c)=g(gn1(a, b, c))g^n(a,~b,~c)=g(g^{n-1}(a,~b,~c)) for n2n\ge 2
Suppose that there exists a positive integer nn so that gn(a, b, c)=(a, b, c)g^n(a,~b,~c)=(a,~b,~c) for some (a, b, c)(0, 0, 0)(a,~b,~c)\neq (0,~0,~0). Prove that g6(a, b, c)=(a, b, c)g^6(a,~b,~c)=(a,~b,~c)