MathDB
Inequality

Source: Iranian TST 2018, first exam, day1, problem 2

April 7, 2018
inequalities

Problem Statement

Determine the least real number kk such that the inequality (2aab)2+(2bbc)2+(2cca)2+k4(2aab+2bbc+2cca)\left(\frac{2a}{a-b}\right)^2+\left(\frac{2b}{b-c}\right)^2+\left(\frac{2c}{c-a}\right)^2+k \geq 4\left(\frac{2a}{a-b}+\frac{2b}{b-c}+\frac{2c}{c-a}\right) holds for all real numbers a,b,ca,b,c.
Proposed by Mohammad Jafari