MathDB
Inequality on eight variables - ILL 1990 NET2

Source:

September 18, 2010
inequalitiesinequalities unsolved

Problem Statement

Given eight real numbers a1a2a7a8a_1 \leq a_2 \leq \cdots \leq a_7 \leq a_8. Let x=a1+a2++a7+a88x = \frac{ a_1 + a_2 + \cdots + a_7 + a_8}{8}, y=a12+a22++a72+a828y = \frac{ a_1^2 + a_2^2 + \cdots + a_7^2 + a_8^2}{8}. Prove that 2yx2a8a14yx2.2 \sqrt{y-x^2} \leq a_8 - a_1 \leq 4 \sqrt{y-x^2}.