MathDB
Inequality on sequence of integers

Source: IMO Shortlist 2017 A7

July 10, 2018
IMO Shortlist

Problem Statement

Let a0,a1,a2,a_0,a_1,a_2,\ldots be a sequence of integers and b0,b1,b2,b_0,b_1,b_2,\ldots be a sequence of positive integers such that a0=0,a1=1a_0=0,a_1=1, and an+1={anbn+an1if bn1=1anbnan1if bn1>1for n=1,2,. a_{n+1} = \begin{cases} a_nb_n+a_{n-1} & \text{if $b_{n-1}=1$} \\ a_nb_n-a_{n-1} & \text{if $b_{n-1}>1$} \end{cases}\qquad\text{for }n=1,2,\ldots. for n=1,2,.n=1,2,\ldots. Prove that at least one of the two numbers a2017a_{2017} and a2018a_{2018} must be greater than or equal to 20172017.