MathDB
Angle Measure

Source:

December 30, 2005

Problem Statement

In the adjoining figure, CDE is an equilateral triangle and ABCD and DEFG are squares. The measure of GDA\angle GDA is
(A) 90(B) 105(C) 120(D) 135(E) 150\text{(A)} \ 90^\circ \qquad \text{(B)} \ 105^\circ \qquad \text{(C)} \ 120^\circ \qquad \text{(D)} \ 135^\circ \qquad \text{(E)} \ 150^\circ
[asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair D=origin, C=D+dir(240), E=D+dir(300), F=E+dir(30), G=D+dir(30), A=D+dir(150), B=C+dir(150); draw(E--D--G--F--E--C--D--A--B--C); pair point=(0,0.5); label("AA", A, dir(point--A)); label("BB", B, dir(point--B)); label("CC", C, dir(point--C)); label("DD", D, dir(-15)); label("EE", E, dir(point--E)); label("FF", F, dir(point--F)); label("GG", G, dir(point--G));[/asy]