Let M be the intersection of diagonals of the convex quadrilateral ABCD, where m(AMB)=60∘. Let the points O1, O2, O3, O4 be the circumcenters of the triangles ABM, BCM, CDM, DAM, respectively. What is Area(ABCD)/Area(O1O2O3O4)?<spanclass=′latex−bold′>(A)</span>21<spanclass=′latex−bold′>(B)</span>23<spanclass=′latex−bold′>(C)</span>23<spanclass=′latex−bold′>(D)</span>21+23<spanclass=′latex−bold′>(E)</span>21+3