MathDB
2023 Iran MO 2nd round P2

Source: 2023 Iran MO 2nd round

May 17, 2023
number theory

Problem Statement

2. Prove that for any 2nN2\le n \in \mathbb{N} there exists positive integers a1,a2,,ana_1,a_2,\cdots,a_n such that ij:gcd(ai,aj)=1\forall i\neq j: \text{gcd}(a_i,a_j) = 1 and i:ai1402\forall i: a_i \ge 1402 and the given relation holds. [a1a2]+[a2a3]++[ana1]=[a2a1]+[a3a2]++[a1an][\frac{a_1}{a_2}]+[\frac{a_2}{a_3}]+\cdots+[\frac{a_n}{a_1}] = [\frac{a_2}{a_1}]+[\frac{a_3}{a_2}]+\cdots+[\frac{a_1}{a_n}]