MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Suspended Romanian Contests
International Mathematical Arhimede Contest (IMAC)
2008 IMAC Arhimede
3
\sqrt {\sin^{2}x/(1+\cos^{2}x)}+\sqrt {\cos^{2}x/(1 +\sin^{2}x)}>=1
\sqrt {\sin^{2}x/(1+\cos^{2}x)}+\sqrt {\cos^{2}x/(1 +\sin^{2}x)}>=1
Source: IMAC Arhimede 2008 p3
May 4, 2019
inequalities
trigonometry
Trigonometric inequality
Problem Statement
Let
0
≤
x
≤
2
π
0 \leq x \leq 2\pi
0
≤
x
≤
2
π
. Prove the inequality
sin
2
x
1
+
cos
2
x
+
cos
2
x
1
+
sin
2
x
≥
1
\sqrt {\frac {\sin^{2}x}{1 + \cos^{2}x}} + \sqrt {\frac {\cos^{2}x}{1 + \sin^{2}x}}\geq 1
1
+
c
o
s
2
x
s
i
n
2
x
+
1
+
s
i
n
2
x
c
o
s
2
x
≥
1
Back to Problems
View on AoPS