MathDB
two elements whose sum is a perfect square

Source: 0

April 28, 2009

Problem Statement

S \equal{} \{1,2,\dots,n\} is divided into two subsets. How the set is divided, if there exist two elements whose sum is a perfect square, then n n is at least ?
<spanclass=latexbold>(A)</span> 13<spanclass=latexbold>(B)</span> 14<spanclass=latexbold>(C)</span> 15<spanclass=latexbold>(D)</span> 16<spanclass=latexbold>(E)</span> 17<span class='latex-bold'>(A)</span>\ 13 \qquad<span class='latex-bold'>(B)</span>\ 14 \qquad<span class='latex-bold'>(C)</span>\ 15 \qquad<span class='latex-bold'>(D)</span>\ 16 \qquad<span class='latex-bold'>(E)</span>\ 17